

Laboratory Toxicity Studies in Response to the TVA Kingston Fossil Plant Fly Ash Spill

Rick M. Sherrard, Tennessee Valley Authority

Time-Critical Toxicity Monitoring Objectives

- Assess dredging and dewatering effects on surface water biota
- ➤ Elutriate Toxicity 3 species 24 tests
- ➤ Dredge Plume Toxicity 2 species 46 tests
- ➤ Stilling Pond Discharge Toxicity 2 species 48 tests
- Characterize effects of ash on benthic biota
- ➤ Whole Sediment Toxicity 5 species 18 tests

Time-Critical Toxicity Monitoring Results

- Assess dredging and dewatering effects on surface water biota
- ➤ Elutriate 17 of 24 tests no toxicity
- ➤ Dredge Plume 46 tests no toxicity
- Stilling Pond Discharge 47 of 48 tests no toxicity
- Characterize effects of ash on benthic biota
- ➤ Whole Sediment 14 of 18 tests no toxicity

Time-Critical Toxicity Monitoring Conclusions

- Dredging and dewatering does not result in toxicity to surface water biota
- Only 1 benthic species (Hyalella azteca) exposed to ash from the Emory River consistently exhibits effects from exposures to fly ash
- Laboratory observations of H. azteca exposures indicate possible physical effects

Ash Is Unlike Natural Sediments

- Ash compacts in sample and exposure containers
- Porewater surfaces during sample storage
- Homogenization is problematic
- Laboratory benthic species unable to burrow in test exposures

Resin Study Design

Resin Study Conclusions

- Resin continually decreases Sb, As, Se more than other metals in ash over time
- Resin treatment of ash eliminates toxicity for H. azteca growth but not survival
- Resin decreases partitioning of Sb, As, Mo, Se, V to porewater and overlying water
- Resin treatment of porewater eliminates toxicity for H. azteca growth and survival

Long-term Exposure Test Species

Ceriodaphnia dubia

Chironomus dilutus

Hyalella azteca

Long-term Exposure Sediment Toxicity Study Design

H. azteca

(8 site samples)

10-day Survival & Growth

(screening)

(4 site samples)

28-day Survival & Growth Test

(definitive)

C. tentans

(8 site samples)

10-day Survival & Growth

(screening)

(4 site samples)

PLC Survival, Growth, & Emergence Test

(definitive)

C. dubia

(8 site samples)

3-brood Survival & Reproduction Test (≈ 7 days)

(definitive)

Long-term Exposure Toxicity Endpoints

- Inhibition Concentration of 25% (IC₂₅)
- ► C. dubia 3-brood survival and reproduction
- ►H. azteca 28-d survival, growth, biomass
- ➤ C. dilutus 20-d survival, growth, biomass and partial life-cycle survival and emergence
- Growth = total weight surviving / # surviving
- Biomass = total weight surviving / # initial

Timeline and Endpoints: Screening and Definitive Tests

Sampling-Transportation-Processing Logistics

Long-term Exposure Toxicity Results Ceriodaphnia dubia

- Clinch River no effects on survival or reproduction
- Emory River no effects on survival or reproduction

Clinch River Hyalella azteca IC₂₅ Values (%)

Clinch River Chironomus dilutus IC₂₅ Values (%)

Emory River Hyalella azteca IC₂₅ Values (%)

Emory River Chironomus dilutus IC₂₅ Values (%)

Long-term Exposure Conclusions

- Surface water invertebrates inhabiting the sediment-water interface are not at risk
- Minor effects observed in Clinch River exposures not attributed to ash
- H. azteca and C. dilutus exposures to Emory River sediments with > 40-50% ash suggest moderate risks

Long-term Exposure Summary: Example of Exposure-Response Curves

Long-term Exposure Summary: The Importance of Ash Content

Long-term Monitoring Plan Sediment Toxicity Sampling

- Sample collection: 2013 & 2017
- ERM 6.0 (reference)
- ERM 1.0 (known ash deposits)
- CRM 8.0 (reference)
- CRM 3.0 (known ash deposits)
- Overbank areas only with suitable habitat

Long-term Monitoring Plan Laboratory Toxicity Testing

- H. azteca 10-day Survival & Growth Test
- Definitive (0, 20, 40, 60, 80, 100%)
- River reference sample results compared to laboratory sediment sample results
- ERM 1.0 and CRM 3.0 sample results compared to river reference sample results
- River water used in all tests

Laboratory Acknowledgements

